

Systemic and Nutritional Dentistry

SYSTEMIC BASED
RESTORATIVE DENTISTRY
PART II: EVIDENCE-BASED DENTAL
MATERIAL SELECTION
© 2004, 2005, 2006 Philip E. Memoli DMD, FAGD, FISD

"Come to the edge," he said,

"We can't," they said,

"Come to the edge," he said,

"We can't, we're scared."

"Come to the edge"

They did,

He pushed them, and they flew.

Marcel

- 1. The world is all that is the case
- 1.1 The world is the totality of facts, not of things
- 1.11 The world is determined <u>by</u> the facts, and by their being <u>all</u> the facts.
- 1.12 For the totality of facts determines what <u>is</u> the case and also whatever is <u>not</u> the case.

Tractatus Logico-Philosophicus
- Wittgenstein

PERSPECTIVE

- 1. The oral cavity <u>is</u> part of the body, and through this attribute, affects the body and is affected by it.
- 2. Factors such as malnutrition can affect underdevelopment, hypoimmunity and opportunistic infection which directly impacts the oral cavity (the "end-organ" concept) and therefore, creates the mechanism by which the system as a whole is affected (by the oral cavity proper).

3. These affections may roughly be categorized by the following:

Oral-Systemic Infections

Oral-Systemic Dysfunction

Oral-Systemic Sensitivity (toxicity)

[The former will be the subject of this inquiry]

4. The current divergence in dental philosophy, that is, the authoritative traditional approach and the equally authoritative alternative approach, can be resolved and complemented in an true evidence-based oral-systemic philosophy.

SUBJECT

- 1. Didactic
- 11. Test Theory and Process
- III. Application: Selection Process
 - A. Categorization by Clinical Protocol and its attendant "Materia Dentica"
 - B. Selection Process Standardization (The Nifty - Fifty)
 - C. Selection Process Individualization based upon Clinical and Physical Test findings.

0

OBJECTIVE

To present a protocol by which dental material selection can be systematized to augment existing concepts to reflect an immunotoxicological evidence based approach.

Disclaimer

Products listed here were taken from Reality Publishing and in no fashion indicates the authors preference or non-preference; they are used for referenced purposes only.

10

Part I: DIDACTIC

"The toxicology and pharmacology of dental restorative materials demands long-term concern not so much in the matter of acute poisonings and dysfunctions with rapid onset, but rather in the lower-grade chronic corrosion and degradation products"

Ref: Brune D; Corrosion of Amalgams, Scand J Dent Res, 89: 506, 1981. **Key Questions**

KQ: What is the individual's greatest risk for chronic, low grade exposure to systemic toxins?

Ref: Frustaci A. et al, Marked Elevation of Myocardial Trace Elements in Idiopathic Dilated Cardiomyopathy compared with Secondary Cardiac Dysfunction, J Am College Cardiol, 33: 55, 1999.

KQ: What are the determinants in assessing possible systemic reactions to dental materials?

Ref: Barnes, J, Assessing Hazards from Prolonged and Repeated Exposure to Low doses of toxic substances, Br Med Bulletin 31: 196, 1975. KQ: What are the potential systemic dysfunctions which may arise from chronic exposure of toxic substances?

Ref: Christian, M. Ed, Cancer and the Environment: Possible Mechanisms of Thresholds for Carcinogens and other toxic substances, J Am College Toxicology 1: 1-321, 1985.

Ref: Strominger J, Biology of the Human Histocompatibility Leucoyte Antigen (HLA) System and a hypothesis regarding the generation of autoimmune diseases, J Clin Investigation 77: 1411, 1986.

14

KQ: How can clinical dentists establish an evidence based toxicological assessment in order to propose a new model of material determination for the individual patient?

Ref: Guzelian PS, Victoroff MS, Holmes NC, James RC, Guzelian CP: Evidence-based toxicology: a comprehensive framework for causation, Human and Experimental Toxicology, 24: 161-201, 2005.

The Emerging Paradigm

"The biocompatibility of dental materials is a complex topic that draws on knowledge from biology, patient risk factors, clinical experience and engineering. Although ignored for many years, biocompatibility is now recognized as a fundamental requirement for any dental restorative material...

16

... In spite of these oversights, [that is, standards or lack of standards for human biocompatibility by the Food and Drug Administration (FDA), the American National Standards Institute (ANSI), the American Dental Association (ADA), and the International Organization for Standardization (ISO)], materials are still used before their biological properties can be fully ascertained."

Ref: Wataha JC, Biocompatibility of Dental Materials, in ed. Anusavice KJ, Phillips' Science of Dental Materials, Saunders 2003 "There is a notable interest in making materials inexpensive and giving them qualities which emphasize ease of placement and workability for the dentist. There is also continuing interest in the strength, elasticity and durability of dental restoratives...

...many of these materials have superb wear and retentional characteristics, the leaching of various combinations of corrosion and degradation byproducts from the materials renders them relatively biologically unsuitable for those persons who possess systemic immune sensitivities.

10

Increasingly, the practice of dental medicine must consider the long range total systemic health effects of any treatment being applied to the mouth. Virtually every organ system in the body may be affected by dental treatment and by the presence of inappropriate dental materials. While longevity of the tooth or filling is an important consideration, the quality of systemic health is of greater importance.

20

Thus, the choice of any restorative material must include consideration of how the patient will handle the material's byproducts when the mass begins to deteriorate or break down. In the breakdown sequences, some tissues can be adversely affected and their function impaired.

21

Still other tissues my not tolerate the presence of abnormal galvanically generated electrical interference or the adverse effects of electrically and chemically stimulated aberrant metabolites on cellular DNA and mitochondrial sites when the restorative material byproducts become involved in various metabolic activities and pathways.

22

Note: Aberrant metabolites can likewise be caused by medications, pollution, dystrophic foods and malnutrition.

Ref: Clifford WJ Materials Reactivity Testing: Background, Basis and Procedures for the Immunological Evaluation of Systemic Sensitization to components which emanate from biomaterials, Clifford Consulting and Research, 1990.

3

MATERIAL BIOREACTIVITY

Material Degradation Processes:

Chemical Breakdown:

- 1. Biochemical: tarnish and corrosion
- 2. Electrochemical: galvanism

Physical Breakdown:

- 1. Release of unreacted molecules
- 2. Release of the reacted molecules
- 3. Release of corrosion products

Bioreactivity Potential

- 1. Inherent reactivity of the native molecule.
- 2. Conversion of the native molecule to a metabolically reactive molecule.

LOCAL EFFECTS

26

LOCAL EFFECTS

Biological Interfaces in the Oral Cavity

Restoration placement creates an interface between the material and its environs:

Tooth

Periodontium Gingiva <u>Soft Tissue</u> Epithelia

Enamel Dentin

PDL

Connective Tissue

Pulp

Periodontal bone

Systemic

Periapical Area Alveolar bone

Circulation

PDL

Systemic Circulation

Systemic Circulation

27

LOCAL EFFECTS

Material Interfaces:

Dentin-resin interface

Acid etching of the collagenous dentinal matrix causes demineralization of the inorganic matrix while preserving the collagenous matrix. Unless desicated, the matrix can physically remain intact allowing an unfilled resin to imbed within it, thereby creating a dentin-resin interface.

28

Dentin-resin interface

Several factors may weaken this interface:

- 1. Dessication
- 2. Non-penetration (via poor technique or sclerotic dentin)
- Resin shrinkage and 'tear' during polymerization shrinkage

Dentin-resin interface

A breached dentin-resin interface results in the creation of a "gap" which results in microleakage (from lack of resin tubule penetration) or nanoleakage (partial penetration). The ramification of leakage can result in:

- 1. Pulpal inflammation and/or degeneration
- 2. Increased material breakdown and systemic exposure to the native and altered molecules Ref: Wataha (ibid)

30

Osseointegration

Integration of a material is directly related to its systemic biocompatibility.

Osseointegration, that is, the ability to form bone to within 100 angstroms of the oxide layer of the implant surface without intervening fibrous connective tissue is possible in:

- titanium oxide
- titanium alloys (Ti Al Va)

Ref: Wataha JC: Materials for endosseous dental implants. J Oral Rehabil 23: 79-90, 1996.

1

Biointegration

Biointegration is the ability of a material, by virtue of its compatibility, to become completely integrated into bone or soft tissue with no intervening space.

Ceramics which comprise this criteria are termed bioactive glasses. Degradation of the glass surface is also necessary to promote biointegration.

Both osseointegration and biointegration are not absolute phenomena but are <u>functions of host</u> <u>response</u>.

Ref: Wataha 1996 (ibid)

...

SYSTEMIC EFFECTS

33

Immune Mediated Systemic Reactions

- 1. Inflammation
- 2. Mutagenicity and Carcinogenicity
- 3. Allerginicity
- 4. Toxicity

34

Inflammation

(Nonspecific Resistance)

Inflammation occurs in connective tissue and is characterized by an effusion of plasma from blood vessels to the CT.

Neutrophils are the primary cells in acute conditions and phagocytose bacteria or toxins, whereupon, macrophages later arrive to complete the immune response.

If the acute exposure ceases, new fibrous CT grows into the inflamed area and healing begins.

If, however, exposure continues, the inflammatory response takes on a chronic mode with monocytes and lymphocytes predominating with changes evident in the blood chemistry.

A CBC (Complete Blood Count) and SMAC can be utilized to determine whether a restorative patient is suffering from a subacute or chronic inflammatory condition.

A dental biocompatibility test can be performed to insure restorative dentistry will not further contribute to the patient's aggravated inflammatory status.

37

Chronic inflammation has been identified as one of the determinants in identifying and controlling chronic degenerative disease.

Ref: Queen HL Toxic Footprints, Health Realities Journal 19: (2) 1-8, 2003

38

Mutagenicity

Mutagenicity is the property of a dental material to exert a mutation in the base-pairing sequence in DNA.

Metal ions such as <u>nickel</u>, <u>copper</u> and <u>beryllium</u>, as well as some components in <u>endodontic sealers</u> are known mutagens. Some <u>resins</u> have mutagenic potential.

Ref: Wataha JC 2003 (ibid)

39

Mutagenicity

Mutagenicity does not always produce carcinogenicity:

"Currently, no dental material has been shown to be carcinogenic in dental application in patients. However, carcinogenesis is often exceedingly difficult to prove or disprove conclusively."

Ref: Wataha JC: 2003 (ibid)

40

ALLERGENICITY AND TOXICITY

Terms

Exposure presentation of a foreign substance, called an antigen, to the immune system

Sensitization process in which an antibody is produced which reacts specifically to a causative antigen, typically in a dose dependent relationship

<u>Hypersensitization</u> a process in a non dose-dependent relationship resulting in excessive tissue damage and functional impairment. <u>Terms</u>

Allergen a foreign substance producing an IgE response.

<u>Toxin</u> a foreign substance typically producing an IgA, IgG or IgM response.

Bioindividual Reactivity

Host Reactivity

Initial Contact

Exposure and subsequent systemic sensitization or hypersensitization usually occurs from non-dental and non-medical sources.

These are the result of antigens whether in food, air or water and exposure results from personal care products, and products chemical and foods found at home, the work place and in the environment.

Ref: Hamilton E, Minski M; Abundance of the chemical elements in man's diet and possible relation with environmental factors; The Science of the Total Environment 1: 375-394, 1972, 1973.

Hypersensitivity Reaction

(Gell and Coombs Classification)

Type I Immediate Atopic or Anaphylactic Reaction

Type II Cytotoxic Hypersensitivity

Type III Immune Complex Hypersensitivity

Type IV Delayed or Cell Mediated Hypersensitivity

Ref: Coombs R, Gell P; Classification of Allergic Reactions responsible for Clinical Hypersensitivity and Disease, Clin Aspects of Immunology 3rd Ed. Gell, Coombs and Lathman eds., Blackwell Press, Oxford P 761, 1975.

4

Toxicity Reactions

Typically, dental materials cause systemic sensitivity (toxicity reaction) rather than hypersensitivity reactions, which are subacute or chronic in nature and clinically undetectable.

When degradation of the materials occurs, corrosion products may represent the most reactive molecules which enter systemic circulation.

15

Toxicity Reaction

Corrosion byproducts may represent one of the greater cytotoxic products and may take the forms of:

acetates nitrites acrylamides oxides carbonates oxylates chlorides phosphates chromates silicates iodides sulfates malates sulfides methylates tartrates nitrates metallic ions

Ref: Clifford 1990 (ibid)

Toxicity Reactions

Once corrosion byproducts and metallic ions enter circulation, they may become complexed into binding sites for various amino acids, proteins, fatty acid and carbohydrate binding sites.

As a result, inflammation occurs in which phagocytes consume the antigens and present them to B-Lymphocytes and plasma cells for processing which produce IgG and IgM antibodies.

Toxicity Reactions

Subsequent exposures results in IgG and IgM combining and forming antibody-antigen complexes in the affected tissues.

Under proper conditions, these complexes are segregated and eliminated via the urine, stool and skin (during perspiration).

If these complexes cannot be eliminated, which is frequently the case during long term chronic exposure, systemic issues such as clotting dysfunction and autoimmune issues may arise.

Ref: Clifford 1990 (ibid)

Concept of Immunotoxicity

Most researchers look for cell death as an indicator of toxicity. Some materials may exert toxic effects, such as dysfunction, far below the cell "toxicity" or cell death levels. This phenomenon has been overlooked and could result in misinterpretation of findings.

Ref: Wataha JC, Hanks CT: Biological effects of palladium and risk of using palladium in dental casting alloys J Oral Rehabil 23: 309-320, 1996.

Immunotoxicity: Palladium

Glutathione (GSH) defends cells against toxic agents to prevent cell death by oxidative stress.

Mercury ions decrease GSH levels until at toxicity levels, the cells can no longer produce GSH and die.

Palladium ions, on the other hand, presumably prevent an increase of GSH levels until cell death occurs.

Ref: Wataha (ibid)

50

Immunotoxicity

Glutathione content of Human Monocytes after subtoxic exposure to mercury and palladium ions measured at 24 hours post exposure.

Note: GSH is the cells first line of defense against toxic exposures and its decrease indicates toxicity.

1

Immunotoxicity: HEMA

HEMA (Hydroxyethylmethacrylate), a dentin bonding component, was studied on its effect on monocytes.

Monocytes will release TNF - alpha, a cytokine, in response to lipopoly-saccharide (LPS), an etiological agent in promoting inflammation.

No amount of HEMA induced or TNF - alpha secretion by itself (see squares on graph) but inhibited the monocytes ability to secrete it after LPS stimulation

Ref: Wataha (ibid)

62

Immunotoxicity

Graph showing HEMA (Hydroxyethylmethacrylate) effect on Human Monocyte TNF-alpha secretion after stimulation by LPS (Lipopolysaccharide), an important periodontal etiological factor. The monocyte is not killed by the HEMA, but its ability to respond to a challenge is severely limited.

53

Part II: TESTING THEORY AND PROCESS

Reactivity

There are 89 important antigen groups found in over 5200 dental materials. These represent metal ions, chemical groups and various chemical compounds.

Each person, by virtue of his / her own "immunobioindividuality" will present, based upon their previous immune system exposure, with their own unique immunological sensitization record.

55

Order of Reactivity

Percentage corresponds to amount of the population (of 12,823 specimens reacting to the material).

1. 97.9% Nickel Salts Group

(Nickel, found in nonprecious alloys and nickeltitanium arch wires, can, in some cases, also produce an IgE reaction).

6

Order of Reactivity*

- 2. 92.7%: Mercury Salts Group
 - (NB: Dental amalgam)
- 3. 91.4%: Aluminum Salts Group
 - (NB: Dental cord astringents)
- 4. 86.4%: Arsenic Salt Group
 - (NB: low grade ceramics or porcelains from the 3rd world; can cross react with cadmium and beryllium antibodies.
- *Ref: Clifford WJ: Reactivity Percentages derived from 12,823 specimens; Clifford Consulting and Research, 1995.

Reactivity

- 5. 82.7%: Chromium Salts Group
 - (NB: Chromium may be complexed with nickel or with cobalt)
- 6. 81.0%: Toluenes Group

(NB: primarily used as a carrier solvent but usually outgasses. If there is improper mixing or curing, it may not completely react and outgas. Also found in cosmetics and skin care products to impart creamy consistency, therefore, a patient may be sensitized if using skin care products).

58

I Fixed this

Reactivity

7. 78.4% Cobalt Salts Group

(NB: found in the pigment of denture materials, prefabricated denture teeth, orthodontic materials and implant materials).

1

Reactivity

- 8. 77.5%: indium Salts Group
 - (NB: metal alloys to improve castability)
- 9. 77.4%: Polyethimines Group

(NB: essentially a byproduct of the plasticization process. Usually the manufacturer will remove it but may be found in reformed crowns, mouth guards and splint materials - especially low cost materials)

Ref: ibid

60

preformed

Reactivity

10. 74.3%: Beryllium Salts Group

(NB: Utilized in nonprecious alloys to improve etching capabiltiy in "Maryland" bridges; there is some interest to remove it from nonprecious alloys in the USA, Europe and Japan. It is still prevalent in most other countries.

11. 68.0%: Lead Salts Group

(NB: used in the USA in gold alloys in unreputable alloy producers and in low grade ceramics)

Ref: ibid

61

Reactivity

12. 63.7% Cerium Salts Group

(NB: found in all ceramics. If the ceramics are properly fired it is locked into the ceramic matrix and cannot dissociate; can potentially dissociate in poorly fired ceramics).

13. 63.3%: Tannins Group

(NB: Similar reaction to toluenes; tannins are also used to impart cleanliness and spreadability to cosmetic and skin care products).

Ref: ibid

62

Reactivity

14. 63.0% Cadmium Salts Group

(NB: Cadmium salts may be used as pink pigment in denture materials)

15. 54.9% Iron Salts Group

(NB: dental alloy contaminant)

16. 43.8% Rubibium Salts Group

(NB: dental alloy contaminant in unreputable alloy manufacturers; if found look for other rare earth metals; facilitates galvanism.

Ref: ibid

63

Reactivity

17. 42.6%: Bismuth Salts Group

(NB: dental alloy contaminant)

18. 36.3%: Antimony Salts Group

(NB: dental alloy contaminant)

19. 36.2%: O-Phosphoric Acid Group

(NB: found in phosphoric acid gels and liquids; one-step bonding agents; whitening agents)

20. 33.5%: Zinc Salts Group

(NB: found in cements)

21. 31.5%: Palladium Salts Group

(NB: found in precious and semiprecious alloy materials)

Ref: ibid

64

tubidion

Reactivity

- 22. 33.1% Gallium Salts Group (NB: alloy contaminant)
- 23. 32.8% Rhodium Group
- (NB: alloy contaminant)
- 24. 32.1% Copper Salts Group
 - (NB: found in precious, semiprecious and nonprecious alloys)
- 25. 31.9% Tin Salts Group
 - (NB: amalgam and alloys)
- 26. 29.8% Formaldehyde Group

(NB: Carrier solvent system; found in composites, glass ionomers, polyethers etc to keep material liquid i.e. increase working time)

Ref: (ibid)

Reactivity Notes

Nonprecious alloys - may contain hexavalent chromium, cobalt, molybdenum, nickel and beryllium. Although Be may be in low concentration, it migrates to the surface where it can compose up to 50% of the alloy surface.

note: Non-North American, European and Japanese alloy manufacturers may have many contaminants, including tungsten, in their non-precious alloys. Ceramic alloys in these markets, have been found to contain uranium.

Reactivity Groups			
Acetates Group	14.1%		
Acrylates Group	00.8%		
Aluminum Salts Group	91.4%		
Antimony Salts Group	36.3%		
Arsenic Salts Group	86.4%		
Barium Salts Group	00.2%		
Benzil Group	00.7%		
Beryllium Salts Group	74.3%		
Bis-GMA Group	00.2%		
-		67	

Reactivity Groups			
Bismuth Salts Group	42.6%		
Boron Group	00.6%		
Butyrates Group	00.3%		
Cadmium Salts Group	63.0%		
Carboxylates Group	00.3%		
Cellulose Group	16.9%		
Cerium Salts Group	63.7%		
Cesium Salts Group	01.9%		
Chromium Salts Group	82.7%		
		68	

Reactivity Groups			
Cobalt Salts Group	78.4%		
Copper Salts Group	32.1%		
Eugenol Group	18.9%		
Fluorides Group	00.9%		
Formaldehyde Group	29.8%		
Gallium Salts Group	33.1%		
Gold Salts Group	00.6%		
Hexanes Group	00.2%		
Hydroxyapatite / CaOH	>0.1%		
		69	

Reactivity Groups		
Indium Salts Group	77.5%	
Iridium Salts Group	09.1%	
Iron Salts Group	54.9%	
Lanthanum Salts Group	17.9%	
Lead Salts Group	68.0%	
Lithium Salts Group	14.3%	
Malienates Group	01.1%	
Manganese Salts Group	04.8%	
Mercury Salts Group	92.7%	
		70

Reactivity (roups	
Molybdenum Salts Group	14.6%	
Nickel Salts Group	97.7%	
O-Phosphoric Acid Group	36.2%	
Palladium Salts Group	31.5%	
Phenols Group	22.1%	
Platinum Salts Group	00.4%	
Polyethers Group	00.2%	
Polyethimines Group	77.4%	
Polysulfide Group	06.3%	
		71

Reactivity Groups			
Polyvinyls Group	11.7%		
Quinones Group	00.1%		
Rhodium Group	32.8%		
Rubidium Salts Group	43.8%		
Ruthenium Salts Group	09.1%		
Selenium Salts Group	07.7%		
Silanes Group	>0.1%		
Silicates Group	>0.1%		
Silver Salts Group	24.7%		
9		72	

Reactivity Groups			
Strontium Salts	00.4%		
Styrenes Group	01.2%		
Tannins Groups	63.3%		
Tantalum Salts Group	13.4%		
Tellurium Salts Group	02.6%		
Thallium Salts Group	18.4%		
Titanium Salts Group	00.2%		
Toluenes Group	81.0%		
		73	

Reactivity Groups			
Trihexalamines Group	00.2%		
Tungsten Salts Group	05.2%		
Uranium Salts Group	04.1%		
Urethanes Group	00.9%		
Vanadium Salts Group	02.3%		
Xylenes Group	00.2%		
Ytterbium Salts Group	01.4%		
Yttrium Salts Group	00.8%		
Zince Salts Group	33.5%		
Zirconium Salts Group	14.8%	74	

PART III:

APPLICATION: SELECTION PROCESS

- A. Materia Dentica
- B. Selection Process Standardization
- C. Selection Process Individualization

75

MATERIA DENTICA

Procedures:

- l. Cavity Preparation
- ll. Crown Preparation
- Ill. Presthetic Materials
- IV. Esthetic Materials
- V. Pediatric Materials

Systems:

- l. Direct Composites
- ll. Indirect Resin Systems
- Ill. Gold based Restoration
- IV. Ceramic based Restorations

76

MATERIA DENTICA

- I. Cavity Preparation
- 1. Anaesthetic Preservative
- 2. Cavity Cleanser
- 3. Desensitizers
- 4. Pulp Cap
- 5. Liner
- 6. Base
- 7. Etchant
- 8. Adhesive Resin
- 9. Pins
- 10. Posts
- 11. Core Materials

1. MATERIA DENTICA: Anaesthetic Preservatives

Benzylkonium Chloride

Butryraldehydes

Formaldehyde

Metabisulfites

Methyl Paraben

Phenol Propionates

Sorbates

Thimerosol

2. PREPARATION

Cleansing Agents

Product

Active Ingredient 2% Chlorhexidine

Concepsis (Vitrdent) Preppies (Whip Mix)

Pumice

Cavity Cleanser (Bisco)

2% Chlorhexidine Gluconate

Ultracid F (Ultradent)

Benzalkonium Chloride 1% Sodium Fluoride

Tubulicid Red (Global) 2% EDTA

Benzalkonium Chloride

1% Sodium Fluoride

79

3. DESENTIZERS

Product Gluma (Kulzer)

Active Ingredient 5% Glutaraldehyde

35% HEMA Super Seal Potassium

(Phoenix)

Oxalate Based Salt

Seal and Protect

Triclosan

(Dentsply / Caulk)

Di and Trimethacrylate resins

PENTA, nanofillers

Acetone

ALL Bond DS (Bisco)

Primer A: NTG-GMA, acetone, and ethanol Primer B: BPDM, acetone and ethanol

Microprime (Danville)

35% HEMA

5% Benzethonium Chloride Sodium Fluoride 10 PPM

Ultra EZ (Ultradent) 3% Potassium Nitrate 0.11% w/fluoride ion

4. Materia Dentica: Pulp Capping Agents

MTA (Mineral Trioxide Aggregate)

Calcium Hydroxide

5. Liners (Resin / Glass Ionomers)

Product Fuji Lining LC Active Ingredients

(GC)

Aluminofluorosilicate glass Polyacrylic Acid

Tartaric Acid

Camphoquinone

Dibutyl hydroxy toluene HEMA

Vitrebond (3M ESPE) Fluroaluminosilicate glass

Photoinitiator

Methacrylate modified Polycarboxylic acid

HEMA

6. BASES & BUILDUPS (Resin / Glass Ionomer)

Product Fuji II LC Active Ingredients

same as Fuji Lining LC

(GC) Vitremer

same as Vitrebond

(3M ESPE)

Barium fluorosilicate glass

Geristore (Den Mat)

Aromatic dimethacrylate

HEMA

Initiators and Stabilizers

7. ETCHANTS

ETCHANTS- Dentin / Enamel

Products Ultra Etch 35% Ultra Etch AB

Active Ingredients

can remove the smear layer]

Gels

(Ultradent) UniEtch

Colors

UniEtch with BAC

Silica

(Bisco)

[note: most of these etchants

Etch-Rite

(Pulpdent) Gluma Etch 35 (Kulzer)

Enamel Etch (Cosmedent)

Gel Etchant (Kerr)

Opti Bond Solo Lactic and Citric Acid (Optibond) Ethyl Alcohol

ETCHANTS-Porcelain

Products

Active Ingredients

Porcelain Etch

9.5% Hydrofluoric Acid

(Ultradent)

Oral Ceram Etch

9.5%

(Gresco)

Porcelain Etch Gel

9.6%

(Pulpdent) Porcelain Etchant

(Bisco)

Porceletch

(Cosmedent)

9.5%

8. ADHESIVES-ALL PURPOSE

Products

Solvents

Optibond

Ethanol, water

(Kerr)

Prime and bond DC

Acetone, Ethanol

(Dentsply /Caulk)

Scotchbond

Ethanol, water

(3M Espe)

All bond 2

Acetone, Ethanol, water

(Bisco) One Step

Acetone

(Bisco)

ADHESIVES-Light Cured

Product

Solvents Ethanol

Optibond Solo Plus (Kerr)

Water

Clearfil SE Bond (Kuraray)

Gluma Comfort Bond

Ethanol, water

+ Desensitization

(Kulzer)

PQ1

Ethanol

(Ultradent)

Single Bond

Ethanol, water

(Espe)

<u>9. PINS</u>

Product

Composition Titanium

Gold

Filpin

(Filhol Dental)

Minim TMS

(Whaledent)

10. POSTS: Metal Free

Product

Composites

Aestheti-Plus

Quartz Fibers in Epoxy

(Bisco) Para Post Fiber White

Matrix

(Whaledent)

Cerapost

Fiber Reinforced Resin

Zirconium Oxide

(Brasseler)

Indications: Esthetics

Chainside Post is an option

POSTS: Metal

Product

Metal

Para – Post

Titanium or Stainless Steel

(Whaledent)

Flexi - Post

Titanium or Stainless Steel

(EDS)

OptiPost

Titanium

(Brasseler)

CAST POSTS

NOTE: EMD Concerns

Whenever possible, ask the laboratory to fabricate the cast posts out of the same gold the crowns or bridgework is being fabricated from.

1

10. CORE MATERIALS

Light-Cured

Large particle composites which cure more deeply than hybrids

Eg. Clearfil photo-cure (Kuraray) Bisfil Cure (Bisco)

Note: Can utilize hybrid to perform build ups.

2

Dual Cure

Large particle composites
Eg: LuxaCure Automix Dual (DMG)
Core Paste Syringeable (DenMat)
Build It! FR (Dentron)

Self Cure

Can build up deeper levels
No trauma to pulp from lights
Eg: Core Paste (DenMat)
Encore (Centrix)
Bisfil II / Cure Flo (Bisco)

93

Materia Dentica

II. Crown Preparation

- 1. Impression Materials
- 2. Bite Registration Materials
- 3. Provisional Materials
- 4. Cements:
 - A. Provisional
 - B. Permanent

94

Materia Dentica: Impression Materials

Impression materials are in the mouth for a short duration of time. Questions of biocompatibility

KQ: Is it possible to use one material even if patients are sensitive to it?

KQ: Which type of material has the lowest systemic sensitivity?

5

1. IMPRESSION MATERIALS

1. Alginate / Hydrocolloid

2. <u>Vinyl Polysiloxane</u>

Products

Aquasil (Dentsply)

Splash (Discus)

Affinis (Coltene)

Flexitime (Kulzer)
Polyether

Permadyne (Espe) Penta Soft (Espe)

Impregum (Espe Polyjel NF (Dentsply) affects set Notes:

Notes:

Easy removal

Slight hydrophilic

Latex contamination

Difficult removal Hydrophilic Bad taste and smell

tsply)

2. BITE REGISTRATION MATERIALS

Product

Notes

Jet Bite

Vinyl Polysiloxanes

(Coltene)

Peppermint Snap

(Discus)

Vanilla

(Discus) Blu-Mousse

(Parkell)

Regisil Rigid

(Dentsply) Ramitec

(Espe)

3. PROVISIONALIZATION

Inlays and Onlays

Products

Notes:

EZ-Temp

Light cured

(Cosmedent)

Semi-flexible (when set)

Systemp

No matrix necessary

(Ivoclar)

Easy Cleanup

First-fill

after removal

(Dentron)

3. Provisionalization Crown and Bridge

Product

Notes:

Luxatemp

Bis-acryl composites

(DMG)

Flexible material

Luxatemp Solar Plus

Easy to remove

(DMS)

Sensitivity (place

Integrity

desensitizer before

(Dentsply)

temp placement).

4. CEMENTS

A. Provisional Cements

Products $Temp\ Bond\ NE$

Composition Poly organic acids

(SDS / Kerr)

Natural Resins,

(DMG)

Fatty Acids, Additives

Temp Bond Clear

Zinc Oxide

(SDS / Kerr) Durelon

Resin Polycarboxylate Acid

(Espe)

Provilink (Ivoclar)

Resin

B. Permanent Cements

Traditional Cements

Most cements come in two components systems: base and catalyst. Bases are usually powders and catalyst are liquid.

Catalysts are usually acidic solutions (proton donors) and powders basic (proton acceptors) consisting of either glass or metallic oxide particles.

Types of Cements

- 1. Traditional Acid-Base Reaction Cements
- 2. Resin Cements
- 3. Resin / Glass Ionomer Cements

Acid-Base Reactions

Material

Formulation

Zinc Phosphate

Powder: Zinc Oxide (90%) and

Magnesium Oxide (10%)

Liquid: Phosphoric Acid

Zinc Oxide -

Powder: Zinc Oxide

Eugenol (EBA Modified)

Glass Ionomer

Liquid: Eugenol (Ethoxybenzoic acid)

Zinc Polycarboxylate

Powder: Zinc Oxide and Magnesium Oxide

or Stannous Fluoride (10-15%)

Liquid: Polyacrylic Acid

Powder: Fluoro alumino-

silicate glass

Liquid: Polyacrylic acid-

Polybasic Carboxylic Acid

103

Water

Resin Cements

<u>Delivery Systems</u>:

Resin Light and Dual Cure

Indications: PLV

Resin Dual Cure

Indications: Metal-free restorations

Resin Self Cure

Indications: Metal restorations

Resin Glass Ionomer

Indications: Metal-free restorations

104

Chemistry: Resin Cements

Powder: Polymethyl Methacrylate beads

Liquid 1: Methacrylate Monomers

Liquid 2: Catalysts

One Paste System:

Methacrylate Monomers

Initiators

Two paste Systems:

Base Paste:

te: Methacrylate Monomers

Fillers

Initiators

Catalyst Paste: Methocrylate Momnomers

Fillers

Activators (chemical cure)

Resin Cements

Light Cured / Dual Cure

Calibra (Dentsply)

Nexus 2 (Kerr)

Variolink (Ivoclar)

Rely X Veneer Cement (3M)

Illusion (Bisco)

Lute It! (Dentron)

Indications: Porcelain Laminate Veneer

Metal-free periodontal splints

Metal-free orthodontic retainers Metal-free restorations (less than 1.5mm in

thickness)

Note: Includes initiators (for light curing) and activators (for

chemical acid-base curing)

106

Resin Cements

Dual Cure Only

Compolute (3M ESPE)

Duo-Link (Bisco)

Panavia F (Kuraray)

Rely X ARC (3M ESPE)

Cement It! (Dentron)

Indications: Metal free inlays

Metal free onlays Metal free crowns

Metal free bridges

Resin Cements

Self-Cure

Panavia 21 (Kuraray)

C & B Cement Luting Composite (Bisco)

Post Cement Hl-X (Bisco)

C & B Metabond (Parkell)

Indications: Metal based inlays & onlays

Ceramometal crowns & bridges

Endodontic posts

Metal based resin bonded bridges

Resin / Glass Ionomers: Purposes

LINERS (Eg: Fuji Lining LC; Vitrebond etc)

BASES (Eg: Fuji II LC; Vitremer Core Buildup etc)

LUTING CEMENTS (to be discussed)

NOTES:

R /GI contain resin and may form a chemical bond with overlaid composite.

R /GI do not require etching and etch or lack of etch will not interfere with a composite bond.

109

Chemistry: Resin Modified Glass Ionomer

Powder: Fluoroaluminosilicate glass

Chemical and/or light activated initiators

Liquid: Polyacrylic Acid

Water Soluble Methacrylate Activators

<u>Paste A</u>: resembles powder <u>Paste B</u>: resembles liquid

110

Resin / Glass Ionomer Luting Cements

Products

Fuji Plus (GC)

Fuji CEM (GC)

Rely X Luting (3M)

PermaCem (DMG)

Principle (Dentsply)

Indications

Buildups and Cores

Class V Restorations and Primary teeth

Luting metal and ceramometal restorations

Do <u>not</u> cement metal-free restorations or endodontic posts!

111

MATERIA DENTICA

Prosthetic Materials

- 1. FPD Materials
- 2. ISD Materials
- 3. RPD and Full Denture Materials

112

FPD Materials

(Discussed in Restorative Systems Section)

2. IMPLANTS

note: trace amounts of-

and Oxygen

Nitrogen, Carbon,

Hydrogen, Iron

Pure Titanium

CP Grade I

CP Grade II CP Grade III

CP Grade IV

Titanium Alloys
Ti - 6 Al-4V Alloy

Ti - 6 Al-4V (ELI Alloy)

Ti -13 Nb-13 Zr (Phase Stabilizers)

Ti -15 Mo-2.8 Nb (Phase Stabilizers)

"Some controversy exists as to which titanium metal to use, because some researchers believe aluminum and vanadium can be toxic if released in sufficient quantities."

Esquivel-Upshaw "Dental Implants" Phillips' Science of Dental Materials 11th Edition (Ed: Anusavice)

114

IMPLANTS (cont)

Ceramic Implants (Non-Bioactive)

Aluminum Oxide (Al2 O2) [Gold Standard]

Zirconia (Zr O2)

Bioactive Ceramics

Hydroxyapatite (HA)

Tricalcium Phosphate (TCP)

"Bioglasses" (Si O2 · CaO · Na 2 O · P2 O5 · MgO)

[note: Osteoinductive properties]

Indications: Implant coatings

Bone grafting

IMPLANTS (others)

Surgical Austenitic Steel (Stainless Steel)

18% Chromium (corrosion resistance)

8% Nickel (stabilize austenitic steel)

"This is not used...because of the allergic potential of nickel..."

Cobalt - Chrome - Molybdenum Alloys

63% Cobalt / 30% Cr / 5% Mb

Vitallium (Cr - Co - Mo alloy)

Ticonium (Ni - Cr - Mo - Be alloy)

NOTE: These generally showed:

- 1. no epithelial attachment
- 2. chronic inflammation
- 3. fibrous encapsulation
- 4. mobility

1

3. DENTURES

Teeth

Porcelain (Projection metal pins)

Swissdent

Acrylic and Vinyl - acrylic resin

Bioblend

Denture Acrylic Resins

Poly (methyl methacrylate) resin

Benzoyl peroxide (initiator)

Hydroquinine (inhibitor)

Glycol dimethacrylate (cross linking agent)

Cadmium (pink color)

18

Denture Materials (cont)

Reline Materials

Rebase Materials

Denture Liners

Denture Adhesives

Maxillofacial Prosthetic Materials

Latexes

Vinyl Plastisols

Silicone Rubbers

Polyurethane Polymers

MATERIA DENTICA

IV. ESTHETIC MATERIALS

Bleaching Agents

120

Whitening / Bleaching Agents

Composition

35% Hydrogen Peroxide

32% Hydrogen Peroxide

Potassium Nitrate Carbopol

Potassium Hydroxide

EDTA

1. Power Types:

2. Assisted

3. Home Bleaching

Power Bleaching Product

Opalescence Xtra

(Ultradent)

Virtuoso Lightening Gel (Den-Mat)

(Dentsply)

30% Hydrogen Peroxide Copolymer of Methylvinyl Ether and maleic anhydride

121

Assisted Bleaching

Product

Composition

Opalescence Quick

35% Carbomide Peroxide

(Ultradent)

White Speed

18% Hydrogen Peroxide

(Discus)

22% Carbamide Peroxide

(equivalent to 35% H2O2)

Home Bleaching

Composition

15 and 20% CAP

0.11% Fluride ion

0.11% Flurode ion

10.15 and 20% CAP

3% Potassium Nitrate

10% Carbamide Peroxide (CAP)

Product

Opalescence

Opalescence F

Opalescense PF

(Ultradent)

Nite White Excel 2

Nite White Excel 2Z

Nite White Excel 2NSF

Day White 2Z

CAP (10%) CAP (16%)

Potassium Nitrate Fluoride

Hydrogen Peroxide (75-9.5%) Activators (Eugenol, Xylitol and Aloe Vera)

CAP (22%)

Neutral Sodium Fluoride

(Discus)

123

MATERIA DENTICA

V. PEDIATRIC MATERIALS

- 1. Compomers
- 2. Sealants
- 3. Temporary Crowns

PEDODONTICS

1. Compomers - "Scuptable"

Product

Composition

Compoglass \underline{F} (Ivoclar)

Ba-Al-fluorosilicate glass Filler:

Ytterbium trifluoride oxides, catalysts, stabilizers Resin matrix: urethane dimethacrylate DM

tetracthylene glycol DM cycloaliphatic decarboxylic

acid DM Filler: Strontium - Al- fluoro-phosphato-Dyract AP silicate glass (Dentsply)

Resin matrix: UDMA

TCB (reaction product of tetracarboxylic acid and HEMA)

Compomers "Flowable"

Product

Dyract Flow

Composition

Compoglass Flow (Ivoclar)

Ba-Al-fluorosilicate glass Ytterbium Trifluoride

Spheroidal Mixed oxides Stabilizers, Pigments Urethane DM Polyethelyene glycol DM

Cycloaliphatic dicarbonic acid DM

Fluoride Strontium - Al - Fl - Si Glass

Titanium oxide (Dentsply)

Stabilizers, Pigments Macromonomers (M-lA - BSA)

Reactive Diluent Polymerizable initiator Fluoride

2. Sealants

Product

Composition

Ultraseal XT Plus

Resin: BID - GMA / TEGDMA

Fluoride releasing

(Ultradent) Clinpro Sealant

Opaque: Filled resin

(3M Espe)

(26-60% depending upon product)

Guardian

(Kerr) Helioseal F /

Clear: no fillers

Helioseal Clear (Ivoclar)

EcuSeal

(DMG)

Clear: no miers

127

MATERIA DENTICA

RESTORATIVE SYSTEMS:

- 1. DIRECT COMPOSITES
- II. INDIRECT RESIN SYSTEMS
- III. GOLD BASED RESTORATIONS
- IV. CERAMIC BASED RESTORATIONS

120

MATERIA DENTICA

DIRECT COMPOSITES:

- 1. Microfills
- 2. Hybrids
- 3. Flowable
- 4. Packables
- 5. Reinforced Fiber
- 6. Tints and Opaques
- 7. Polishing Pastes

129

COMPOSITES

1. MICROFILLS

Product

Indications
Anterior Class III (Cosmedent)

Renamel and IV Restorations

and IV Restoration Durafil VS

Composite Laminate

(Kulzer) Veneers

Heliomolar (Ivoclar)

Filtek All

(3M ESPE)

Matrixx Ant. Microfill

(Discus) Micronew (Bicso)

2. HYBRIDS

Product Esthet X Indications

microfills)

(Dentsply) Renamel Hybrid Posterior Composites Anterior Class IV (note: blend better than

(Cosmedent)

Point 4

Point 4 (Kerr)

Vitalescence

(Ultradent) XRV Herculite

(Kerr) Renamel Sculpt (Cosmedent)

131

3. FLOWABLE

Products
Flow It! ALC
(Pentron)
Revolution 2
(Kerr)

(Kerr)
Tetric Flow
(Ivoclar)
Renamel Flowable
Microfill and Hybri

Microfill and Hybrid (Cosmedent) Filtek Flow (3M Espe)

Bisfil 2B (Bisco) StarFill 2B (Danville) Notes: Indicated in deep proximal boxes and Class V Abraction Lesions

All are light cured

Except "2B"s which are Dual Cure and Self-Cure. EMD: match hybrid or microfil to flowable to decrease EMD generated by two different composites

4. PACKABLE COMPOSITES

Products Prodigy Condensable

(Kerr) Filtek P60 Notes: EMD-match to Flowable / hybrid Indication (?) -Class II boxes

(3M) Heliomolar HB (Ivoclar) Renamel Pack (Cosmedent) Pyramid (Bisco) SureFil

(Dentsply) Virtuoso Packable (Den-Mat) Matrixx Post. Hybrid

(Discus)

5. REINFORCED FIBERS (Fiberglass)

Product Ribbond

Composites Polyethylene

(Ribbond)

Polyethylene

Connect (Kerr)

Splint-It

"S2 Glass"

(Pentron)

(a proprietary glass blend)

Indications:

To increase flexural strength of the restoration

Restorations: Periodontal Splints

Resin bonded bridges Natural tooth pontics

Dentures

6. TINTS AND OPAQUES

Products

NOTE: Most tints are metallic

oxides:

Creative color

Brown (Iron/Nickel oxide) Green (Copper oxide)

(Cosmedent) Kolor + Plus /

Yellow-Brown (Titanium

belle Glass HP Opaque

oxide)

135

(Kerr)

Lavendar (Manganese

Tetric Color (Ivoclar)

Blue (Cobalt oxide) NOTE: Opacity:

Cerium oxide

Zirconium oxide

Titanium oxide

Tin oxide

7. POLISHING PASTES

Product

Prisma-Gloss / XF

(Dentsply)

Insta-Glaze HVB

(Taub)

Enamelize

(Cosmedent)

Composite

(Shofu)

Composition

Aluminum oxide Fine Diamond Particles

(for higher luster)

MATERIA DENTICA

INDIRECT RESIN SYSTEMS

9. INDIRECT RESIN SYSTEMS

Bell Glass HP

Products (SDS / Kerr)

Pyrex glass with a blended resin of aliphatic and urethane dimethacrylates (same filler as Herculite XRV)

BIS-GMA resin matrix Cristobalt

(Dentsply)

Barium borosilicate glass (77%)

Sculpture / Fiber Kor

PCDMA (Polycarbonate Dimethacrylate

(Dentron)

Silica and Barrium glass particles

(3M Espe)

Strontium Aluminum Borosilic glass Pyrogenic silica (silicon dioxide)

Resin: Bisphenyl A Polyethoxy

(Kuraray)

Dimethacrylate, hydrophobic Dimethacrylate and urethane

Targis / Vectris (Ivoclar)

Tetramethacrylate

Filler: Silica and barrium glass

NOTES: Resin inlays have a better fit than ceramic inlays
69% Dentists use resin inlays
57% use ceramic onlays
Can repair with hybrid.

GOLD BASED RESTORATIONS

1. CAST GOLD ALLOYS

Type I

Type II

Type III

Type IV

2. CERAMOMETAL GOLD ALLOYS

Type III

Type IV

Type IV LS (Long Span Bridges)

140

1. CAST GOLD RESTORATIONS

1905 Taggert's "Lost Wax Technique" 1932 ANSI / ADA Specification No. 5

Тур	<u>e</u>	Min. Gold	Vicker's Hardness
I	Soft	83	50- 90
II	Medium	78	90-120
III	Hard	78	120-150
IV	Extra-Hard	d 75	>150

Copper, silver or platinum were used to strengthen gold.

Platinum was used to prevent silver tarnishing in low gold
alloys

Hardness and Function Classification

Cast Gold Restoration

Type I (Soft) Yellow Gold

(Inlays)

Type II (Medium) Yellow Gold

(Onlays)

Type III (Hard) Yellow Gold

Low Gold

Silver Palladium

(Onlays, Crowns, Abutments)

1.42

Cast Gold Restoration (cont)

Type IV (Extra-Hard) Yellow Gold

Low Gold

Silver Palladium

(Crowns, Abutments, Partial

Frameworks)

2. CERAMO-METAL RESTORATIONS

In the 1950's, techniques were being developed to fuse gold to porcelain but laboratory failures were occurring due to porcelain's lower coefficient of thermal expansion. Two important changes allowed gold to bond to porcelain:

- Porcelain soda and potash raised the porcelain coefficient
- 2. <u>Gold</u> the addition of platinum and palladium lowered it's coefficient.

Bond Stress

The <u>Bond Stress Test</u> was developed to test porcelain debonding at the interface (<u>Bond Strength</u> is less than the <u>cohesive strength</u> of porcelain)

By the addition of less than 1% of:

Iron

Indium

Tin

...the bond strength was tripled.

NOTE: these metals provide an <u>oxide film</u> which increase bond strength.

Metallurgy

Copper - "hardens" or strengthens the alloy

- increases tarnishing;

- 'reddens' the gold alloys

- causes greening effect on porcelain

<u>Silver</u> - minimizes the reddening effect of copper

Gallium - added to silver free alloys to

compensate for decreased thermal

expansion

Zinc - acts as an oxygen scavenger to

decrease porosity in the castings

146

Yield Strength

Yield Strength is the most important factor for strength in high gold alloys for bridgework.

Due to the need for high yield strength, <u>lower</u> gold (@72%) amounts are used, thereby necessitating the addition of other elements.

After <u>casting</u>, <u>quenching</u> as opposed to <u>bench</u> <u>cooling</u> can lower the yield strength by as much as 35%.

Alloy Classifications

Yellow Gold - 60% or more gold White Gold - 50% or more gold Silver Palladium - white alloys Palladium Silver white alloy

148

<u>Hardness and Function Classification</u> <u>Metal-Ceramic Restoration</u>

Metal Ceramic: Yellow Gold 88%

White Gold 52%

Palladium - Silver *

*(can be up to 60% palladium)

Instructions for Physical Laboratory Testing

- $\hfill \square$ CLIFFORD MATERIALS REACTIVITY TEST
- □ Get Test Kit and Prescription from the Doctor
- □ Complete "Patient Information" Form
- □ Freeze gel packets overnight
- □ Fast for 12 hours prior to blood drawing.

You may drink as much water as you want.

Refrain from smoking, chewing gum, taking nutritional supplements, herbs and medications.

(If you must take meds, please advise us). Do not take this test if on antibiotics or steroids!

- □ Bring the following to the drawing:
 - □ Prescription, completed forms and frozen gel packs
 - □ \$245 "Clifford Consulting"
 - □ Credit card for overnight shipping carrier
 - □ Pay fee for blood drawing
 - □ Draw blood only on Mondays, Tuesdays or Wednesdays

NOTE: Drawing laboratories or outpatient Emergency Medical Centers:

<u>Before</u> making an appointment inquire as to whether they can centrifuge the blood

EMO in Berkeley Heights can perform this test (908-464-6700)

151

□ BLOOD CHEMISTRY AND UROGRAM

Call the Institute for Health Realities (IHR) at 1-719-598-4968

Procedure: □ Request a QP2 (Queen Profile II)

- □ Payment (approx. \$295 plus S/H)
- ☐ Upon receipt of your Blood Testing Kit, complete the "Requisition Form"

NOTE: The fee includes the blood drawing fee if performed by a Quest Laboratory (call information to find your local laboratory). Results are usually obtained within 10 days.

- ☐ Follow instructions above for fasting
- □ Bring the following to the drawing:
 - □ Completed Requisition Form
 - □ Complete Blood Testing Kit
- □ Draw blood only on Mondays, Tuesdays or

